Al AND CYBERCRIME: A POLICY FRAMEWORK
FOR ORGANIZATIONAL DEFENSE

Luca Knecht, Petra Maria Asprion, and Bettina Schneider

University of Applied Sciences and Arts Northwestern Switzerland FHNW, School
of Business, Institute for Information Systems, Basel, Switzerland

ABSTRACT

Artificial Intelligence (Al) is a transformative technology with significant potential and accompanying
threats. While Al fosters innovation, it is increasingly exploited for criminal activities, especially cyber-
crime. This research examines the criminal elements of Al, focusing on its role in enabling sophisticated
cyber threats. Addressing Al requires organizations to adopt measures as traditional cybersecurity frame-
works struggle to keep pace with rapidly evolving Al-driven threats. This research identifies and catego-
rizes the criminal elements of Al, with particular attention to their application in cybercrime. Requirements
derived from expert interviews are the foundation for developing a conceptual policy framework to provide
organizations with measures to combat Al-driven threats. The proposed framework, refined through expert
feedback, offers targeted, actionable recommendations to enhance organizational resilience against Al-
driven threats. By providing a systematic structure and evaluated measures, the framework supports cyber-
security professionals, IT managers, and risk officers in mitigating the dual-use risks of Al. The research
results contribute to bridging the gap in cybersecurity literature by addressing the evolving nature of Al-
related threats and presenting a forward-looking policy framework tailored to middle-to-large organiza-
tions.
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1  INTRODUCTION

1.1 Relevance and Problem Statement

The dual-use nature of artificial intelligence (Al)—its capacity for both beneficial and malicious applications—
has significantly contributed to the rise in cyberattacks, particularly in the areas of social engineering, deep-
fakes, and autonomous hacking (Bueermann & Rohrs, 2024; Loh et al., 2024; Brundage et al., 2018). The
World Economic Forum’s Global Risk Report 2024 identifies Al-generated misinformation and disinformation
as the second-highest global risk, with far-reaching implications such as destabilizing governments, inciting
unrest, and enabling terrorism (Bueermann & Rohrs, 2024). Cybercrime has surged globally, with incidents
increasing by 600% between 2020 and 2023 (Rao et al., 2023). In Switzerland, cybercrime rose by 31.5% in
2023 compared to the previous year, threatening financial stability, reputational integrity, and business conti-
nuity (Federal Statistical Office, 2024).

Organizations face increasing difficulty in detecting and mitigating Al-driven threats, as conventional cy-
bersecurity frameworks lag behind the evolving threat landscape (Melaku, 2023). Al-enhanced social engi-
neering further exploits human vulnerabilities, increasing susceptibility to attacks (Melaku, 2023). The absence
of globally harmonized regulations facilitates cross-border misuse of Al, while the rapid pace of Al develop-
ment continues to outstrip existing security protocols (Evang, 2022). Moreover, Al's reliance on large datasets



raises privacy concerns, as anonymized data remains vulnerable to inference attacks (Admass et al., 2024).
Given AI’s transformative yet hazardous potential, organizations must establish a comprehensive understand-
ing of its criminal applications and implement timely, actionable countermeasures (Admass et al., 2024; Mau-
rya, 2023).

1.2 Research Goal and Related Questions

This study aims to identify and categorize the criminal elements of Al, with a particular focus on Al-enabled
cyber threats. To bridge the gap between the malicious use of Al and the growing need for cybersecurity resil-
ience, it proposes a conceptual policy framework that provides organizations with structured, actionable miti-
gation strategies. The research is guided by the following key research questions (RQ):

RQ1: What are the current criminal elements associated with Al-driven threats?

RQ2: How can these criminal elements be systematically categorized?

RQ3: What are the key requirements for developing a policy framework to address Al-driven threats
RQ4: How can these requirements be translated into a coherent conceptual policy framework?

RQS5: How useful is the resulting framework in supporting organizations against Al-enabled cyber threats?

2  LITERATURE REVIEW

As part of the research design, first a literature review was carried out with focus on the criminal use of Al in
cybersecurity, examining how cybercriminals exploit Al to automate attacks and evade detection, as well as
identifying countermeasures to strengthen security frameworks. The literature review covers sources from 2020
to 2024, in English and German, reflecting the rapid evolution of Al It begins with a review of grey literature
from industry leaders (e.g., Palo Alto Networks, the Big Four, WEF) to establish key terminology and trends.
Academic insights were gathered from databases such as Google Scholar, ScienceDirect, Web of Science, and
Semantic Scholar. Al tools like ChatGPT 40 and Scholar GPT supported the search process. Of 132 sources
identified, 88 were selected for in-depth analysis based on their recency, credibility, and relevance to RQs. The
following sections summarize the key findings in a concise manner.

2.1 General Classification of Al

A common generic classification of Al is developed from Saghiri et al. (2022). They classify Al in (1) Artificial
Narrow Intelligence (performs specialized tasks), (2) Artificial General Intelligence (seeks to replicate human
intelligence), and (3) Artificial Super Intelligence (a hypothetical form exceeding human intelligence). Cur-
rently, Al progresses primarily through machine learning (ML) and deep learning (DL), which use neural net-
works to analyze large datasets. ML models improve with experience, while DL processes unstructured data
such as images or speech through multi-layered algorithms (IBM, 2024). These technologies power Al’s role
in cybersecurity, automation, and fraud detection—but also introduce new avenues for misuse (Guembe et al.,
2022). Understanding these misuse risks is vital for mitigating Al-related cyber threats (Admass et al., 2024).

2.2 Criminal Elements of Al

To provide structure and clarity, we categorize the criminal elements of Al into six distinct domains based on,
but extended from Blauth et al. (2022), including (1) bias in Al decision-making, (2) autonomous weapons and
Al warfare, (3) Al-driven social engineering, (4) Al in cybercrime, (5) intellectual property theft and Al ma-
nipulation, and (6) privacy invasion and mass surveillance. This categorization allows for a more comprehen-
sive analysis of the diverse ways in which Al can be misused in the context of cybersecurity.

(1) Bias in AI Decision-Making: Al systems can reflect and amplify bias through flawed algorithms, bi-
ased training data, or human input (Tabassi, 2023). In cybersecurity, this can result in inaccurate threat



detection or unfair profiling (IBM, 2023). Mitigating these risks requires responsible Al practices, including
transparency, explainability, and adherence to emerging regulations like the EU Al Act (ISACA, 2024).

(2) Autonomous Weapons and AI Warfare: Autonomous Weapons Systems (AWS) use Al to identify
and attack targets without direct human control (Blauth et al., 2022). Al is also deployed in cyberwarfare,
espionage, and surveillance for its speed and data-processing capabilities (Yamin et al., 2021). These uses raise
ethical concerns around accountability and escalation risks (European Union Agency for Cybersecurity, 2023).

(3) AI-Driven Social Engineering: Al enables more personalized and deceptive social engineering attacks
via generative tools and language models (Falade, 2023). By analyzing online data, attackers craft effective
phishing and impersonation campaigns. Broader access to Al lowers the barrier to launching such sophisticated
attacks (Schmitt & Flechais, 2023).

(4) Al in Cybercrime: Cybercriminals automate attacks using Al, increasing scale and precision (Malatji,
2023). Al-driven malware evades detection by adapting code or execution paths. Criminals also use Al to
execute large-scale DDoS attacks, targeting networks and critical infrastructure (Guembe et al., 2022).

(5) Intellectual Property Theft and AI Manipulation: Al challenges IP law by reducing human input in
content creation (Hilty et al., 2021; Kokane, 2021). Legal ambiguity around Al-generated outputs increases IP
theft risks. Cybercriminals exploit Al to steal proprietary data, highlighting the need for global legal harmoni-
zation (Nnamdi et al., 2023; Pavis, 2021).

(6) Privacy Invasion and Mass Surveillance: Al's need for extensive data raises privacy risks through
inference attacks and misuse (Admass et al., 2024; Shahriar et al., 2023). Users face the personalization-privacy
paradox (Meurisch & Miihlhduser, 2022). Technologies like facial recognition facilitate mass surveillance,
with risks of bias, misidentification, and authoritarian misuse (Clarke, 2022; Maphosa, 2023).

2.3 Cybercrime — Patterns and Trends

2.3.1 Al-enabled Cybercrime

Advances in Al have transformed cybercrime by enabling automation, personalization, and large-scale opera-
tions (Malatji, 2023). Al-driven threats include phishing, deepfakes, malware, and ransomware, which target
vulnerabilities in both individuals and organizations (Guembe et al., 2022). We identified four attack types:
e  Distributed Denial-of-Service (DDoS) Attacks: Al enhances botnet coordination, allowing faster, more
adaptive DDoS assaults (Aslan et al., 2023; Humayun et al., 2020).
e  Malware and Ransomware: Al enables malware to mutate dynamically, evading traditional defenses
through evolving behaviors (Aslan et al., 2023; Humayun et al., 2020).
e  Phishing and Spear-Phishing: natural language processing NLP-driven tools craft personalized mes-
sages that adapt to targets in real (Aslan et al., 2023; Humayun et al., 2020).
e  Al-enhanced Identity Theft: Deepfakes of voices, images, and videos facilitate impersonation for fraud
and espionage (Aslan et al., 2023; Humayun et al., 2020).

2.3.2 Motivations for Cyberattacks

Cyberattacks are driven by financial gain, identity theft, espionage, and sabotage (Mijwil et al., 2023; Li,
2017; Adlakha et al., 2019). Criminals steal data for profit or resale, while state actors seek strategic intelli-
gence. Some attacks aim to disrupt systems or damage reputations (Aftab et al., 2022). Other motives include
cyberterrorism, misinformation campaigns, and resource hijacking for botnets or cryptomining (Li, 2017;
Mijwil et al., 2023). Al enables diverse threat actors to automate exploitation processes and adapt attack strat-
egies in real time. Common actors behind Al-driven attacks: (1) Organized Crime Groups: Use Al for large-
scale fraud, laundering, and ID theft (Edwards et al., 2022), (2) State-Sponsored Actors: Employ Al for espio-
nage, sabotage, political interference (Hylender et al., 2023), (3) Individual Hackers: Pre-built Al tools enable
attacks with minimal expertise (Edwards et al., 2022) and (4) Insiders: Leverage insider knowledge and Al
tools to manipulate or extract data (Hylender et al., 2023).



2.4 Cybersecurity — Al Enhancements

As Al advances cyber threats, organizations increasingly adopt Al-enabled cybersecurity to improve stra-
tegic, operational, and technical defenses, including enhanced threat detection, faster incident response, and
proactive prevention, boosting digital infrastructure resilience.

Strategic Defense Measures. Strategic cybersecurity reduces risks and aligns with standards like ISO/IEC
27001 and NIST CSF for risk management and protection (Alshar’e, 2023; Evang, 2022). The MITRE
ATT&CK framework aids threat hunting and response (MITRE Corporation, 2024). However, these frame-
works can be costly, complex, and less flexible against evolving Al threats (Melaku, 2023; Alshar’e, 2023).
Regulatory compliance is crucial: GDPR governs EU data protection (Wolff et al., 2023), the AI Act introduces
risk-based Al governance from 2024 (European Parliament & Council of the European Union, 2024), and
Switzerland enforces the Federal Act on Data Protection (The Federal Assembly of the Swiss Confederation,
2020). Human error remains a major vulnerability; thus, Security Education Training and Awareness (SETA)
programs are vital (MIT Technology Review, 2021; Dash & Ansari, 2022).

Operational Defence Measures. These include daily tools like access control (MFA, least privilege) (Hu
et al., 2017), firewalls, intrusion detection systems (NIST, 2020), encryption, and backups (Plaka, 2022). Inci-
dent response plans, patching, antivirus, and SIEM systems support threat management and monitoring (Soup-
paya & Scarfone, 2022; Palo Alto Networks, 2024; Ban et al., 2023). Employee training reinforces threat
awareness and best practices (Dash & Ansari, 2022; MIT Technology Review, 2021).

Technical Defence Measures. Al boosts cybersecurity via automation and intelligent detection, identifying
anomalies, phishing, and malware variants (Maurya, 2023; Shanthi et al., 2023; Mohamed, 2023). Al-driven
intrusion detection monitors traffic, while automated remediation and SOAR platforms speed responses (Mo-
hamed, 2023; Shanthi et al., 2023). Al also supports vulnerability analysis, penetration testing, threat intelli-
gence, user behavior profiling, and zero-day exploit prediction (Maurya, 2023; Mohamed, 2023). Additional
uses include biometric authentication, cloud and IoT security, and tailored cybersecurity training (Shanthi et
al., 2023; Mohamed, 2023). Challenges persist regarding data privacy, bias, and Al transparency (Adewale &
Segun, 2024; Zhang et al., 2022; Shanthi et al., 2023).

2.5 Research Gap

Despite advances in Al-powered cybersecurity, organizations struggle to adapt to rapidly evolving Al threats.
Existing frameworks like ISO/IEC 27001/2 and NIST CSF do not fully address AI’s fast-paced changes, leav-
ing vulnerabilities exposed (Evang, 2022). Traditional measures target known threats, but Al-driven attacks
continuously evolve, bypassing standard controls (Malatji, 2023). Cybersecurity training remains insufficient
for Al-specific threats, and employees often lack skills to detect Al-generated phishing, deepfakes, and auto-
mated attacks. Therefore, Al-focused awareness programs are needed to boost human resilience against Al-
enabled deception (Dash & Ansari, 2022; Alshar’e, 2023). Another key gap is the absence of standardized Al
security frameworks; while the EU Al Act sets ethical guidelines, no universal policy framework governs AI’s
cybersecurity role (Wolff et al., 2023). This regulatory uncertainty hampers enforcement and enables Al mis-
use. To address these gaps, we propose a conceptual policy framework integrating strategic, operational, and
technical Al cybersecurity measures to enhance organizational resilience and mitigate Al-driven risks.

3  RESEARCH APPLICATION

3.1 Design and Process

This research was based on a pragmatic research philosophy focused on real-world solutions to Al-driven
cybersecurity threats (adhered to Saunders et al., 2019). Employing an inductive approach, we explored emerg-
ing Al threats beyond existing theories by deriving an artefact from literature and qualitative expert interviews
(based on recommendations from Saunders et al., 2019). Using qualitative methods and coding, we extracted
key themes from cybersecurity and Al experts categorizing challenges and solutions (adhered to vom Brocke



et al., 2020). To enhance methodological transparency, this research involved semi-structured interviews with
eight Swiss cybersecurity experts selected for their roles in IT governance, risk management, and Al deploy-
ment. Interviews followed a standardized protocol focused on Al threat categorization and mitigation strate-
gies. Thematic coding was conducted manually to identify recurring patterns and validate framework compo-
nents. The literature review (Section 2) laid the theoretical groundwork and identified research gaps, while
interviews provided nuanced perspectives on threats and mitigation. Data were collected cross-sectionally to
capture the current Al threat landscape, with future longitudinal studies recommended. As leading methodol-
ogy the Design Science Research (DSR) approach by Kuechler & Vaishnavi (2004) seemed most preferably
applicable with its four iterative phases:

1. Problem Awareness: An extensive literature review analyzed Al cybercrime, threats, and frameworks,
addressing RQs 1 and 2 and identifying gaps.

2. Suggestion: Using the Double Diamond Model (Meinel et al., 2011), semi-structured interviews with
Swiss experts informed Al-centric policy framework requirements. Thematic analysis and standards re-
view guided development, addressing RQ3.

3. Development: Requirements were translated into an initial Al-driven policy framework (Version 0.1),
refined iteratively with expert feedback to Conceptual Framework 1.0, addressing RQ4.

4. Evaluation: Cybersecurity experts assessed the framework’s strengths and limitations through interviews,
enabling refinements to finalize Conceptual Framework 1.0, ensuring responsiveness to evolving threats
and addressing RQS5.

3.2 Artifact Development

The conceptual policy framework evolved iteratively to provide a structured, adaptable approach to Al-driven
cybersecurity threats. It began with an initial structure incorporating essential cybersecurity measures aligned
with best practices. The framework includes an overview outlining its purpose, target audience, and key prin-
ciples, offering a structured approach to Al threats with risk assessments, Al-specific security measures, and
adaptability for various organizations. Version 0.1 emphasized modularity, allowing users to apply measures
comprehensively or selectively. Security measures were refined and categorized by best practices, focusing on
Al-augmented defenses, human factors, legal compliance, and technical controls. Each measure details imple-
mentation steps, risk assessments, and use cases. The initial version was systematically compared to require-
ments to ensure completeness before evaluation.

3.3 Artifact Evaluation

Evaluation assessed the framework’s effectiveness, scalability, robustness, and usability through expert inter-
views. Experts validated its practical applicability and suggested refinements for clarity, such as clearer goals,
separating categories into distinct frameworks, and adding practical examples. The framework’s scalability
was praised, though experts recommended tailoring advice to different risk levels with guiding questions and
case studies. For robustness, clearer terminology and hierarchical categorization were advised, along with con-
solidating overlapping categories to reduce redundancy. Usability was commended for simplicity, with sug-
gestions to include actionable examples and simplified workflows. Table 1 summarizes adaptations made from
expert feedback:

Table 1 Adaptations resulting from the artefact evaluation.

# Conceptional Policy Framework - Artefact Adaptions

1 Expanded goals and purpose clarify the framework’s mission and target organizations, replacing a brief original statement.

2 Baseline cybersecurity reaffirmed by emphasizing traditional controls (e.g., NIST CSF, ISO 27001), with Al as an added layer.
3 “How to use it” section enhanced with guiding questions to help practitioners navigate the framework.

4 Terminology reviewed for consistency, eliminating confusing or duplicate terms.

5 Overlapping categories and measures consolidated, streamlining taxonomy and reducing redundant activities.




4 RESULTING POLICY FRAMEWORK

The final conceptual policy framework 1.0 (Figure 1) integrates theoretical foundations with practical strategies
to help organizations mitigate Al-driven cybersecurity threats. Designed with a modular structure, it enables
flexible application- either holistically or focused on specific areas - and complements existing cybersecurity
strategies. Serving IT teams, compliance officers, policymakers, researchers, and educators, the framework
addresses both traditional security needs - such as authentication, patch management, and training - and emerg-
ing Al-specific risks requiring adaptive responses, ethical oversight, and regulatory compliance.

Organized into four main categories (Figure 1, detailed in Table 2), the framework presents targeted measures
with clear objectives, implementation steps, and references to standards like ISO/IEC 27001 and the NIST
CSF.

Conceptual Framework 1.0

Al-Augmented Cyber Defense

(A2) Al-Powered
Defensive Integration

(A3.2) Advanced Social
Engineering Detection
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Security Adaptation
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in AL in Al Frameworks
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(D2) Counteracting Misinformation
and Disinformation
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Figure 1. Conceptual Framework 1.0.

Organizations are encouraged to prioritize these measures based on their risk profiles, resource availability,
and strategic goals. Its scalable design supports continuous improvement and focuses on critical domains such
as social engineering and secure Al development. By integrating technical, governance, and human-focused
components, the policy framework aligns with key regulations, including the GDPR, Swiss FADP, the upcom-
ing EU AI Act, and management standards such as ISO/IEC and the NIST AI RMF.

Table 2. Conceptional Framework 1.0 with four main categories, measures and detailed context.

## Conceptual Policy Framework Detailed Description
Main Categories
A AL-Augmented Cyber Defense E.nhancing defense via real-time detection, automated responses, and predic-
tive analytics.
Measure
Al Continuous Security Adap- | Implementing security systems that adjust in real-time to emerging threats
tion using Al and machine learning.
A2 Al-Powered Defensive Inte- | Integrating Al technologies into existing cybersecurity defenses to enhance
gration capabilities in threat detection, response, and prevention.
A3.1 Sophisticated Detection Utilizing advanced technologies like Al and machine learning to detect com-
Technology plex and evolving cyber threats that traditional methods might miss.
A32 Advanced Social Engineer- | Using Al and behavioral analytics to identify and prevent social engineering
ing Detection attacks like phishing and spear-phishing.




B Securing Al Systems Protecting Al from threats with dedicated security measures.
Measure
B1 Resilience Against Adver- Building systems robust against attacks that exploit Al systems, such as ad-
sarial Al Threats versarial machine learning attacks.
B2 AI Risk Management Identlfylng, assessing, and mitigating risks associated with the use of Al
technologies within an organization.
B3 AT Access and Usage Managmg who has access to Al systems and how they are used to prevent
unauthorized use or abuse.
B4 Secure Al Development Incorporating security best practices throughout the Al development lifecy-
Lifecycle cle to prevent vulnerabilities.
B5 Al Explainability and Ensuring that Al systems are transparent, and their decision-making pro-
Transparency cesses are understandable to humans.
C Governance, Legal, and Ethics Ensuring that Al complies with laws, ethics, and strong governance.
Measure
Cl Legal Compliance in Al En;urmg 'Fhat .AI technologies comply with relevant laws, regulations, and
ethical guidelines.
C2 Ethical AI Development Erllsur'mg th.at Al .systems are designed and deplpyed according to ethical
principles like fairness and respect for human rights.
C3 Privacy and Data Protec- | Ensuring that Al systems handle personal and sensitive data in compliance
tion in AI with data protection laws like GDPR.
Cc4 Application of Cybersecu- | Updating existing cybersecurity frameworks to incorporate Al considera-
rity Frameworks tions and address new technological challenges.
Cs5 Data Governance for Al Est&}bllshlng rgbust data governance frameworks to manage the quality, se-
curity, and ethical use of data in Al systems.
D Human Factors and Training Emphasizes awareness and education to reduce Al-driven risks.
Measure
D1 Awareness and Training Enhancing employee awareness and training regarding cybersecurity, with a
Enhancement focus on Al-related threats and tools.
D2 Counteracting Misinfor- Strategies and tools to detect, analyze, and mitigate the spread of false or
mation and Disinformation | misleading information.

S  CONCLUSION AND OUTLOOK

This research examined the dual-use nature of Al highlighting its growing misuse in advanced cyberattacks
such as automated phishing, Al-driven malware, deepfakes, and data manipulation. While Al enhances cyber-
security resilience, it also presents new vulnerabilities exploited by cybercriminals. The main contribution is a
conceptual policy framework developed through expert interviews and literature review, targeting organiza-
tions in Europe and Switzerland. Designed for cybersecurity professionals, IT managers, and risk officers, the
framework supports the management of Al-related threats in alignment with regulatory standards such as the
EU AI Act and GDPR.

The findings emphasize the urgency of adaptive, proactive cybersecurity strategies and validate the rele-
vance of bridging theoretical insight with practical application. However, limitations include the regional scope
and the need for iterative refinement. Compared to existing models such as ISO/IEC 27001, NIST CSF, and
the EU Al Act, the proposed policy framework offers a more targeted approach to Al-specific threats. While
ISO and NIST provide general cybersecurity guidance, they lack granularity in addressing Al misuse. The EU
Al Act focuses on ethical governance but does not offer operational mitigation strategies. This conceptual
policy framework bridges these gaps by integrating strategic, operational, and technical measures tailored to
Al-enabled cybercrime.

Regarding limitations, it should not be concealed that the policy framework is grounded in a regional and
sectoral context, drawing primarily from qualitative insights provided by eight Swiss cybersecurity experts.
Although informative, this scope may constrain global applicability and overlook broader industry nuances.
Furthermore, the policy framework has yet to undergo empirical validation or real-world implementation.

Future research should therefore broaden the sample base, engage cross-sectoral case studies, and apply
longitudinal and human-centered approaches - such as Al-driven training for social engineering awareness - to
ensure broader relevance and impact. Additional alignment with international legal frameworks would further



strengthen global adoption. Ultimately, the findings underscore the urgency of adaptive, forward-looking cy-
bersecurity strategies and affirm the importance of translating theoretical insights into actionable tools for
practitioners navigating the evolving landscape of Al-enabled threats.
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